Mastering Radicals: Practice Exercises

In mathematics, particularly in algebra, radicals or square roots play a significant role. They are expressions that represent the operation of extracting a root of a number. Let's delve into some practice exercises to enhance your proficiency in dealing with radicals.

Exercise 1: Simplifying Radicals

Simplify the following radicals:

1. \( \sqrt{18} \)

2. \( \sqrt{75} \)

3. \( \sqrt{128} \)

4. \( \sqrt{200} \)

Solution:

1. \( \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \times \sqrt{2} = 3\sqrt{2} \)

2. \( \sqrt{75} = \sqrt{25 \times 3} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3} \)

3. \( \sqrt{128} = \sqrt{64 \times 2} = \sqrt{64} \times \sqrt{2} = 8\sqrt{2} \)

4. \( \sqrt{200} = \sqrt{100 \times 2} = \sqrt{100} \times \sqrt{2} = 10\sqrt{2} \)

Exercise 2: Operations with Radicals

Perform the indicated operations and simplify the result:

1. \( 3\sqrt{32} 5\sqrt{8} \)

2. \( 2\sqrt{50} 4\sqrt{18} \)

3. \( (\sqrt{27})(\sqrt{12}) \)

4. \( \frac{\sqrt{75}}{\sqrt{3}} \)

Solution:

1. \( 3\sqrt{32} 5\sqrt{8} = 3\sqrt{16 \times 2} 5\sqrt{4 \times 2} = 3 \times 4\sqrt{2} 5 \times 2\sqrt{2} = 12\sqrt{2} 10\sqrt{2} = 22\sqrt{2} \)

2. \( 2\sqrt{50} 4\sqrt{18} = 2\sqrt{25 \times 2} 4\sqrt{9 \times 2} = 2 \times 5\sqrt{2} 4 \times 3\sqrt{2} = 10\sqrt{2} 12\sqrt{2} = 2\sqrt{2} \)

3. \( (\sqrt{27})(\sqrt{12}) = \sqrt{3^3} \times \sqrt{2^2 \times 3} = 3\sqrt{2^2 \times 3} = 3 \times 2\sqrt{3} = 6\sqrt{3} \)

4. \( \frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} = \sqrt{25} = 5 \)

Exercise 3: Rationalizing Denominators

Rationalize the denominators of the following expressions:

1. \( \frac{5}{\sqrt{2}} \)

2. \( \frac{3}{\sqrt{7}} \)

3. \( \frac{2}{\sqrt{5} \sqrt{3}} \)

4. \( \frac{\sqrt{3} 2\sqrt{5}}{\sqrt{3} 2\sqrt{5}} \)

Solution:

1. \( \frac{5}{\sqrt{2}} = \frac{5}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{5\sqrt{2}}{2} \)

2. \( \frac{3}{\sqrt{7}} = \frac{3}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{3\sqrt{7}}{7} \)

3. \( \frac{2}{\sqrt{5} \sqrt{3}} = \frac{2(\sqrt{5} \sqrt{3})}{(\sqrt{5} \sqrt{3})(\sqrt{5} \sqrt{3})} = \frac{2(\sqrt{5} \sqrt{3})}{5 3} = \frac{2(\sqrt{5} \sqrt{3})}{2} = \sqrt{5} \sqrt{3} \)

4. \( \frac{\sqrt{3} 2\sqrt{5}}{\sqrt{3} 2\sqrt{5}} = \frac{(\sqrt{3} 2\sqrt{5})(\sqrt{3} 2\sqrt{5})}{(\sqrt{3} 2\sqrt{5})(\sqrt{3} 2\sqrt{5})} = \frac{3 2\sqrt{15} 2\sqrt{15} 20}{3 2\sqrt{15} 2\sqrt{15} 20} = \frac{23 4\sqrt{15}}{17} = \frac{23}{17} \frac{4\sqrt{15}}{17} \)

These exercises cover a range of operations involving radicals, from simplification to addition, subtraction, multiplication, division, and rationalization. Practicing these concepts will strengthen your understanding and proficiency in working with radicals. Keep practicing to master these skills!

免责声明:本网站部分内容由用户自行上传,若侵犯了您的权益,请联系我们处理,谢谢!联系QQ:2760375052

分享:

扫一扫在手机阅读、分享本文

禾熙

这家伙太懒。。。

  • 暂无未发布任何投稿。